Capture Power Prediction of the Frustum of a Cone Shaped Floating Body Based on BP Neural Network
نویسندگان
چکیده
How to improve the power generation of wave energy converters (WEC) has become one main research objectives in field. This paper illustrates a framework on use back propagation (BP) neural network predicting capture frustum cone shaped floating body. Mathematical model single body is derived, and radius, semi-vertical angle, mass, submergence depth, take-off (PTO) damping coefficient, stiffness coefficient are identified as key variables. Commercial software ANSYS-AQWA used for numerical simulations obtain hydrodynamic parameters, then calculated by these parameters. A database containing 100 samples established Latin hypercube sampling (LHS) method, simple feature study conducted. BP with high accuracy designed trained predictions based built database. The results show that forecasting desired outputs great agreement error percentage not greater than 4%, correlation (CC) 0.9, P value close 1, root mean square (RMSE) less 139 W. proposed method provides guideline designers identify basic parameters system coefficient.
منابع مشابه
analysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولThe Prediction of Granulating Effect Based on BP Neural Network
During the granulation process of Iron ore sinter mixture, there are many factors affect the granulating effect, such as chemical composition, size distribution, surface feature of particle, and so on. Some researchers use traditional fitting calculation methods like least square method and regression analysis method to predict granulation effects, which exists big error. In order to predict it...
متن کاملNetwork Traffic Prediction based on Particle Swarm BP Neural Network
The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and str...
متن کاملAdaptive Network Traffic Prediction Algorithm based on BP Neural Network
With the rapid development of Internet technology, the network now has a large size and high complexity, and consequently the network management is becoming increasing difficult and complexity, so traffic forecast play a more and more role in network management. With a large amount of real traffic data collected from the actual network, an adaptive network traffic prediction algorithm based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Marine Science and Engineering
سال: 2021
ISSN: ['2077-1312']
DOI: https://doi.org/10.3390/jmse9060656