Canonical heights for Hénon maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible Complex Hénon Maps

We identify and investigate a class of complex Hénon maps H : C2 → C2 that are reversible, that is, each H can be factorized as RU where R2 = U2 = IdC2 . Fixed points and periodic points of order two are classified in terms of symmetry, with respect to R or U , and as either elliptic or saddle points. Orbits are investigated using a Java applet which is provided as an electronic appendix.

متن کامل

Canonical Heights on Hyperelliptic Curves

We describe an algorithm to compute canonical heights of points on hyperelliptic curves over number fields, using Arakelov geometry. We include a worked example for illustration purposes.

متن کامل

A Finiteness Theorem for Canonical Heights Attached to Rational Maps over Function Fields

Let K be a function field, let φ ∈ K(T ) be a rational map of degree d ≥ 2 defined over K, and suppose that φ is not isotrivial. In this paper, we show that a point P ∈ P(K̄) has φ-canonical height zero if and only if P is preperiodic for φ. This answers affirmatively a question of Szpiro and Tucker, and generalizes a recent result of Benedetto from polynomials to rational functions. We actually...

متن کامل

Evolutionary Chaos Controller Synthesis for Stabilizing Chaotic Hénon Maps

This paper deals with synthesizing control laws by means of analytic programming (AP) for the Hénon map, which is a discrete chaotic system. The tool for symbolic regression is used for stabilizing the stable state and higher periodic orbits, which represent oscillations between several values of a chaotic system. For experimentation, the self-organizing migrating algorithm (SOMA) is used with ...

متن کامل

Canonical Heights on Genus Two Jacobians

Let K be a number field and let C/K be a curve of genus 2 with Jacobian variety J . In this paper, we study the canonical height ĥ : J(K) → R. More specifically, we consider the following two problems, which are important in applications: (1) for a given P ∈ J(K), compute ĥ(P ) efficiently; (2) for a given bound B > 0, find all P ∈ J(K) with ĥ(P ) ≤ B. We develop an algorithm running in polynom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2013

ISSN: 0024-6115

DOI: 10.1112/plms/pdt026