Canonical bundles for Hamiltonian loop group manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surjectivity for Hamiltonian Loop Group Spaces

Let G be a compact Lie group, and let LG denote the corresponding loop group. Let (X,ω) be a weakly symplectic Banach manifold. Consider a Hamiltonian action of LG on (X,ω), and assume that the moment map μ : X −→ Lg∗ is proper. We consider the function |μ|2 : X −→ R, and use a version of Morse theory to show that the inclusion map j : μ(0) −→ X induces a surjection j∗ : H∗ G(X) −→ H∗ G(μ−1(0))...

متن کامل

Involutory Hopf Group-coalgebras and Flat Bundles over 3-manifolds

Given a group π, we use involutary Hopf π-coalgebras to define a scalar invariant of flat π-bundles over 3-manifolds. When π = 1, this invariant equals to the one of 3-manifolds constructed by Kuperberg from involutary Hopf algebras. We give examples which show that this invariant is not trivial.

متن کامل

Positivity of Relative Canonical Bundles for Families of Canonically Polarized Manifolds

Given an effectively parameterized family of canonically polarized manifolds the Kähler-Einstein metrics on the fibers induce a hermitian metric on the relative canonical bundle. We use a global elliptic equation to show that this metric is strictly positive. For degenerating families we obtain a singular hermitian metric. Applications concern the curvature of the classical and generalized Weil...

متن کامل

Canonical framings for 3-manifolds

A framing of an oriented trivial bundle is a homotopy class of sections of the associated oriented frame bundle. This paper is a study of the framings of the tangent bundle τM of a smooth closed oriented 3-manifold M , often referred to simply as framings of M . We shall also discuss stable framings and 2-framings of M , that is framings of ε ⊕ τM (where ε is an oriented line bundle) and 2τM = ...

متن کامل

T-duality as a Duality of Loop Group Bundles

Representing the data of a string compactified on a circle in the background of H-flux in terms of the geometric data of a principal loop group bundle, we show that T-duality in type II string theory can be understood as the interchange of the momentum and winding homomorphisms of the principal loop group bundle, thus giving rise to a new interpretation of T-duality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2001

ISSN: 0030-8730

DOI: 10.2140/pjm.2001.198.477