Can the Structure Similarity of Training Patches Affect the Sea Surface Temperature Deep Learning Super-Resolution?

نویسندگان

چکیده

Meso- and fine-scale sea surface temperature (SST) is an essential parameter in oceanographic research. Remote sensing efficient way to acquire global SST. However, single infrared-based microwave-based satellite-derived SST cannot obtain complete coverage high-resolution simultaneously. Deep learning super-resolution (SR) techniques have exhibited the ability enhance spatial resolution, offering potential reconstruct details of fields. Current SR research focuses mainly on improving structure model instead training dataset selection. Different from generating low-resolution images by downscaling corresponding images, high- are derived different sensors. Hence, similarity patches may affect and, consequently, reconstruction. In this study, we first discuss influence selection performance, showing that determined index (SSIM) 0.6 can result higher reconstruction accuracy better image quality. addition, practical stage, between input objective output a key factor for SR. Moreover, obtained actual AMSR2 MODIS more suitable because skin sub-skin difference. Finally, accuracies models relatively consistent, yet differences reconstructed quality rather significant.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)

cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...

the underlying structure of language proficiency and the proficiency level

هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...

15 صفحه اول

the effects of changing roughness on the flow structure in the bends

flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...

Super-Resolution via Deep Learning

The recent phenomenal interest in convolutional neural networks (CNNs) must have made it inevitable for the super-resolution (SR) community to explore its potential. The response has been immense and in the last three years, since the advent of the pioneering work, there appeared too many works not to warrant a comprehensive survey. This paper surveys the SR literature in the context of deep le...

متن کامل

Corefrence resolution with deep learning in the Persian Labnguage

Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs13183568