Caging of ad-dimensional sphere and its relevance for the random dense sphere packing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caging of a d-dimensional sphere and its relevance for the random dense sphere packing.

We analyze the caging of a hard sphere (i.e., the complete arrest of all translational motions) by randomly distributed static contact points on the sphere surface for arbitrary dimension d>/=1, and prove that the average number of uncorrelated contacts required to cage a sphere is (d)=2d+1. Computer simulations, which confirm this analytical result, are also used to model the effect of corr...

متن کامل

Random Close Packing and the Hard Sphere

The Percus-Yevick theory for monodisperse hard spheres gives very good results for the pressure and structure factor of the system in a whole range of densities that lie within the gas and liquid phases. However, the equation seems to lead to a very unacceptable result beyond that region. Namely, the Percus-Yevick theory predicts a smooth behavior of the pressure that diverges only when the vol...

متن کامل

The sphere packing problem

Hales, T.C., The sphere packing problem, Journal of Computational and Applied Mathematics 44 (1992) 41-76. The sphere packing problem asks whether any packing of spheres of equal radius in three dimensions has density exceeding that of the face-centered-cubic lattice packing (of density IT/V%). This paper sketches a solution to this problem.

متن کامل

The Sphere-Packing Problem

A brief report on recent work on the sphere-packing problem. 1991 Mathematics Subject Classification: 52C17

متن کامل

Random perfect lattices and the sphere packing problem.

Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily. Their number, how...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2001

ISSN: 1063-651X,1095-3787

DOI: 10.1103/physreve.63.021404