Ca 2+ Signals and Neuronal Death in Brain Ischemia
نویسندگان
چکیده
منابع مشابه
Ca Signals and Neuronal Death in Brain Ischemia
Although Ca signals are necessary for cell communication and survival, abnormal cellular Ca load can trigger different cell death programs. Ca mediates cell death by activating proteases (ie, calpains), by reinforcing signals leading to caspase activation or by triggering other catabolic processes mediated by lipases and nucleases. Failure in the clearance of excitatory amino acid is a critical...
متن کاملCa2+ signals and neuronal death in brain ischemia.
Although Ca(2+) signals are necessary for cell communication and survival, abnormal cellular Ca(2+) load can trigger different cell death programs. Ca(2+) mediates cell death by activating proteases (ie, calpains), by reinforcing signals leading to caspase activation or by triggering other catabolic processes mediated by lipases and nucleases. Failure in the clearance of excitatory amino acid i...
متن کاملPhagocytosis executes delayed neuronal death after focal brain ischemia.
Delayed neuronal loss and brain atrophy after cerebral ischemia contribute to stroke and dementia pathology, but the mechanisms are poorly understood. Phagocytic removal of neurons is generally assumed to be beneficial and to occur only after neuronal death. However, we report herein that inhibition of phagocytosis can prevent delayed loss and death of functional neurons after transient brain i...
متن کاملNeuronal injury and death following focal mild brain injury: The role of network excitability and seizure
Objective(s): While traumatic brain injury (TBI) is a predisposing factor for development of post-traumatic epilepsy (PTE), the occurrence of seizures following brain trauma can infuriate adverse consequences of brain injury. However, the effect of seizures in epileptogenesis after mild TBI cannot yet be accurately confirmed. This study was designed to investigate the ...
متن کاملNeuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia
Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stroke
سال: 2007
ISSN: 0039-2499,1524-4628
DOI: 10.1161/01.str.0000256294.46009.29