C0 coarse geometry and scalar curvature

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic upper curvature bounds in coarse geometry

We define a notion of an asymptotic upper curvature bound for Gromov hyperbolic metric spaces that is invariant under rough-isometries and examine the basic properties of this concept.

متن کامل

C0-coarse Geometry of Complements of Z-sets in the Hilbert Cube

Motivated by the Chapman Complement Theorem, we construct an isomorphism between the topological category of compact Z-sets in the Hilbert cube Q and the C0-coarse category of their complements. The C0coarse morphisms are, in this particular case, intrinsically related to uniformly continuous proper maps. Using that fact we are able to relate in a natural way some of the topological invariants ...

متن کامل

Coarse Geometry and Randomness

1 Introductory graph and metric notions 5 1.1 The Cheeger constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Expander graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Isoperimetric dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Rough isome...

متن کامل

Positive Scalar Curvature

One of the striking initial applications of the Seiberg-Witten invariants was to give new obstructions to the existence of Riemannian metrics of positive scalar curvature on 4– manifolds. The vanishing of the Seiberg–Witten invariants of a manifold admitting such a metric may be viewed as a non-linear generalization of the classic conditions [12, 11] derived from the Dirac operator. If a manifo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2003

ISSN: 0022-1236

DOI: 10.1016/s0022-1236(02)00025-3