C-groups of high rank for the symmetric groups
نویسندگان
چکیده
منابع مشابه
COUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS
In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...
متن کاملhomogenous finitary symmetric groups
we characterize strictly diagonal type of embeddings offinitary symmetric groups in terms of cardinality and the characteristic. namely, we prove thefollowing.let $kappa$ be an infinite cardinal. if$g=underset{i=1}{stackrel{infty}bigcup} g_i,$ where $ g_i=fsym(kappa n_i)$,$(h=underset{i=1}{stackrel{infty}bigcup}h_i, $ where $ h_i=alt(kappa n_i) ), $ is a group of strictly diagonal type and$xi=(...
متن کاملRepresentations of Symmetric Groups
A surprising theorem in the modular representation theory of symmetric groups uses induction and restriction functors to define an action of an affine Kac-Moody special linear algebra on the level of Grothendieck groups. This action identifies the direct sum of Grothendieck groups with an integrable highest weight module of the Kac-Moody algebra. The purpose of this write-up is to provide a gen...
متن کاملRepresentations of symmetric groups
In this thesis we study the ordinary and the modular representation theory of the symmetric group. In particular we focus our work on different important open questions in the area. 1. Foulkes’ Conjecture In Chapter 2 we focus our attention on the long standing open problem known as Foulkes’ Conjecture. We use methods from character theory of symmetric groups to determine new information on the...
متن کاملSymmetric Generation of Groups
Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups, but gaining familiarity with these groups presents problems for two reasons. Firstly, they were discovered in many different ways, so to understand their constructions in depth one needs to study lots of different techniques. Secondly, since each of them is, in a sense, recording some e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2018
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2018.04.031