Building degradation index with variable selection for multivariate sensory data

نویسندگان

چکیده

The modeling and analysis of degradation data have been an active research area in reliability engineering for assessment system health management. As the sensor technology advances, multivariate sensory are commonly collected underlying process. However, most existing on requires a univariate index to be provided. Thus, constructing is fundamental step modeling. In this paper, we propose novel building method with censoring. Based additive nonlinear model variable selection, proposed can handle censored data, automatically select informative signals used index. penalized likelihood adaptive group penalty developed parameter estimation. We demonstrate that outperforms methods via both simulation studies analyses NASA jet engine data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable selection for multivariate failure time data.

In this paper, we proposed a penalised pseudo-partial likelihood method for variable selection with multivariate failure time data with a growing number of regression coefficients. Under certain regularity conditions, we show the consistency and asymptotic normality of the penalised likelihood estimators. We further demonstrate that, for certain penalty functions with proper choices of regulari...

متن کامل

Variable Selection for Multivariate Survival data

It is assumed for the Cox’s proportional hazards model that the survival times of subjects are independent. This assumption might be violated in some situations, in which the collected data are correlated. The well-known Cox model is not valid in this situation because independence assumption among individuals is violated. For this purpose Cox’s proportional hazard model is extent to the analys...

متن کامل

Variable Selection in Single Index Quantile Regression for Heteroscedastic Data

Quantile regression (QR) has become a popular method of data analysis, especially when the error term is heteroscedastic, due to its relevance in many scientific studies. The ubiquity of high dimensional data has led to a number of variable selection methods for linear/nonlinear QR models and, recently, for the single index quantile regression (SIQR) model. We propose a new algorithm for simult...

متن کامل

Variable Selection for High Dimensional Multivariate Outcomes.

We consider variable selection for high-dimensional multivariate regression using penalized likelihoods when the number of outcomes and the number of covariates might be large. To account for within-subject correlation, we consider variable selection when a working precision matrix is used and when the precision matrix is jointly estimated using a two-stage procedure. We show that under suitabl...

متن کامل

Variable Selection for Multivariate Logistic Regression Models

In this paper, we use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Reliability Engineering & System Safety

سال: 2022

ISSN: ['1879-0836', '0951-8320']

DOI: https://doi.org/10.1016/j.ress.2022.108704