Broadband spontaneous emission rate enhancement through the design of plasmonic nanoantennas
نویسندگان
چکیده
منابع مشابه
Ultrafast spontaneous emission source using plasmonic nanoantennas
Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an e...
متن کاملBroadband enhancement of spontaneous emission in a photonic-plasmonic structure.
We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, leading to a 4 times broader emission spectrum. The reflectance measurement and the finite-difference t...
متن کاملLarge spontaneous emission enhancement in plasmonic nanocavities
Cavity–emitter coupling can enable a host of potential applications in quantum optics, from low-threshold lasers to brighter single-photon sources for quantum cryptography1. Although some of the first demonstrations of spontaneous emission modification occurred in metallic structures2,3, it was only after the recent demonstration of cavity quantum electrodynamics effects in dielectric optical c...
متن کاملBroadband light bending with plasmonic nanoantennas.
The precise manipulation of a propagating wave using phase control is a fundamental building block of optical systems. The wavefront of a light beam propagating across an interface can be modified arbitrarily by introducing abrupt phase changes. We experimentally demonstrated unparalleled wavefront control in a broadband optical wavelength range from 1.0 to 1.9 micrometers. This is accomplished...
متن کاملSpontaneous Emission Rate Enhancement Using Optical Antennas
An integrated tunable C band laser fabricated in a commercial CMOS foundry is discussed. The laser is embedded in the silicon chip, and is hermetically sealed. Preliminary optical characterization results are presented. OCIS codes: (250.5960) Semiconductor Lasers; (250.5300) Photonic Integrated Circuits; (140.3600) Lasers, tunable
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optical Materials Express
سال: 2012
ISSN: 2159-3930
DOI: 10.1364/ome.2.000566