Bridge principle for constant and positive Gauss curvature surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates in Surfaces with Positive Constant Gauss Curvature

We give optimal bounds of the height, curvature, area and volume of K-surfaces in R3 bounding a planar curve. The spherical caps are characterized as the unique K-surfaces achieving these bounds.

متن کامل

Constant Mean Curvature Surfaces of Any Positive Genus

We show the existence of several new families of non-compact constant mean curvature surfaces: (i) singly-punctured surfaces of arbitrary genus g ≥ 1, (ii) doubly-punctured tori, and (iii) doubly periodic surfaces with Delaunay ends.

متن کامل

On the Gauss Curvature of Minimal Surfaces!?)

1. Summary of results. The following is known: let 5 be a minimal surface defined by z=f(x, y) over the region D:x2+y2<R2, and let p be the point of S over the origin. Let W= (1+fl+fl)112 at p. Then the Gauss curvature K at p satisfies \K\ Sc/R2W2. The best numerical value of c known previously was 12.25. This inequality is simultaneously sharpened and generalized. First of all, it is proved th...

متن کامل

New Constant Mean Curvature Surfaces

We use the DPW construction [5] to present three new classes of immersed CMC cylinders, each of which includes surfaces with umbilics. The first class consists of cylinders with one end asymptotic to a Delaunay surface. The second class presents surfaces with a closed planar geodesic. In the third class each surface has a closed curve of points with a common tangent plane. An appendix, by the t...

متن کامل

Coplanar Constant Mean Curvature Surfaces

We consider constant mean curvature surfaces with finite topology, properly embedded in three-space in the sense of Alexandrov. Such surfaces with three ends and genus zero were constructed and completely classified by the authors [GKS2, GKS1]. Here we extend the arguments to the case of an arbitrary number of ends, under the assumption that the asymptotic axes of the ends lie in a common plane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Analysis and Geometry

سال: 1999

ISSN: 1019-8385,1944-9992

DOI: 10.4310/cag.1999.v7.n3.a2