Brick Manifolds and Toric Varieties of Brick Polytopes
نویسندگان
چکیده
منابع مشابه
Brick Manifolds and Toric Varieties of Brick Polytopes
In type A, Bott-Samelson varieties are posets in which ascending chains are flags of vector spaces. They come equipped with a map into the flag variety G/B. These varieties are mostly studied in the case in which the map into G/B is birational to the image. In this paper we study Bott-Samelsons for general types, more precisely, we study the combinatorics a fiber of the map into G/B when it is ...
متن کاملBott-Samelson Varieties, Subword Complexes and Brick Polytopes
Bott-Samelson varieties factor the flag variety G/B into a product of CP’s with a map into G/B. These varieties are mostly studied in the case in which the map into G/B is birational; however in this paper we study fibers of this map when it is not birational. We will see that in some cases this fiber is a toric variety. In order to do so we use the moment map of a Bott-Samelson variety to tran...
متن کاملGeneralized associahedra via brick polytopes
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملBrick polytopes, lattice quotients, and Hopf algebras
This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday’s realization of the associahedron, and J.-L. Loday and M. Ronco’s Hopf algebra on binary trees. We show that these constructions extend in the world of acyclic k-triangulations, which were already considered as the vertices of V. Pilaud and F. Santos’ brick polytopes. We describe combinatorially a natural surjecti...
متن کاملToric Varieties and Lattice Polytopes
We begin with a lattice N isomorphic to Z. The dual lattice M of N is given by Hom(N,Z); it is also isomorphic to Z. (The alphabet may appear to be going backwards; but this notation is standard in the literature.) We write the pairing of v ∈ N and w ∈M as 〈v, w〉. A cone in N is a subset of the real vector space NR = N ⊗R generated by nonnegative R-linear combinations of a set of vectors {v1, ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2016
ISSN: 1077-8926
DOI: 10.37236/5038