Brain's strategy for perceptual estimates: model averaging, model selection, or prob. matching?
نویسندگان
چکیده
منابع مشابه
Bayesian Model Averaging , Learning and Model Selection ∗
Agents have two forecasting models, one consistent with the unique rational expectations equilibrium, another that assumes a time-varying parameter structure. When agents use Bayesian updating to choose between models in a self-referential system, we find that learning dynamics lead to selection of one of the two models. However, there are parameter regions for which the non-rational forecastin...
متن کاملBayesian Model Selection and Model Averaging.
This paper reviews the Bayesian approach to model selection and model averaging. In this review, I emphasize objective Bayesian methods based on noninformative priors. I will also discuss implementation details, approximations, and relationships to other methods. Copyright 2000 Academic Press.
متن کاملForecasting, Model Averaging and Model Selection
Abstract This paper explores forecasting using model selection and model averaging and attempts to draw conclusion both in the context of stationarity and non-stationarity. Model averaging tends to be viewed as a polar opposite of model selection; often the motivation for averaging is to avoid the pitfalls of selecting models. However, selection cannot be avoided since every possible model cann...
متن کاملUsing Generalized Language Model for Question Matching
Question and answering service is one of the popular services in the World Wide Web. The main goal of these services is to finding the best answer for user's input question as quick as possible. In order to achieve this aim, most of these use new techniques foe question matching. . We have a lot of question and answering services in Persian web, so it seems that developing a question matching m...
متن کاملBayesian Model Averaging and Model Selection for Polarity Classification
One of the most relevant task in Sentiment Analysis is Polarity Classification. In this paper, we discuss how to explore the potential of ensembles of classifiers and propose a voting mechanism based on Bayesian Model Averaging (BMA). An important issue to be addressed when using ensemble classification is the model selection strategy. In order to help in selecting the best ensemble composition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Systems Neuroscience
سال: 2009
ISSN: 1662-5137
DOI: 10.3389/conf.neuro.06.2009.03.220