Bounds for modular L-functions in the level aspect☆

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Modular L-functions in the Level Aspect

Let f be a primitive (holomorphic or Maaß) cusp form of level q and nontrivial nebentypus. Then for Re s = 1 2 the associated L-function satisfies L(f, s) q 1 4 − 1 1889 , where the implied constant depends polynomially on s and the archimedean parameters of f (weight or Laplacian eigenvalue). Résumé. Soit f une forme modulaire cuspidale primitive (holomorphe ou de Maaß) de niveau q et de carac...

متن کامل

Rankin-selberg L-functions in the Level Aspect

In this paper we calculate the asymptotics of various moments of the central values of Rankin-Selberg convolution L-functions of large level, thus generalizing the results and methods of W. Duke, J. Friedlander, and H. Iwaniec and of the authors. Consequences include convexity-breaking bounds, nonvanishing of a positive proportion of central values, and linear independence results for certain H...

متن کامل

Convexity bounds for L-functions

We prove a sharp convexity bound for L-functions, at the centre of the critical strip, under conditions weaker than those for the Selberg Class. 2000 Mathematics Subject Classification: Primary 11M41

متن کامل

Number Theory 19 Statistics for low - lying zeros of Hecke L - functions in the level aspect

We would like to provide evidence for the fact that zeros of L-functions seem to behave statistically as eigenvalues of random matrices of large rank throughout the instance of Hecke L-functions. First, we remind you of Iwaniec-Luo-Sarnak’s results on one-level densities for low-lying zeros of Hecke L-functions (see [5]) and Katz-Sarnak’s results on one-level densities for eigenvalues of orthog...

متن کامل

Real zeros and size of Rankin-Selberg L-functions in the level aspect

In this paper, some asymptotic formulas are proved for the harmonic mollified second moment of a family of Rankin-Selberg Lfunctions. One of the main new input is a substantial improvement of the admissible length of the mollifier which is done by solving a shifted convolution problem by a spectral method on average. A first consequence is a new subconvexity bound for Rankin-Selberg L-functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Scientifiques de l’École Normale Supérieure

سال: 2007

ISSN: 0012-9593

DOI: 10.1016/j.ansens.2007.05.003