Bounding extrema over global attractors using polynomial optimisation
نویسندگان
چکیده
منابع مشابه
Strange attractors are classified by bounding Tori.
There is at present a doubly discrete classification for strange attractors of low dimension, d(L)<3. A branched manifold describes the stretching and squeezing processes that generate the strange attractor, and a basis set of orbits describes the complete set of unstable periodic orbits in the attractor. To this we add a third discrete classification level. Strange attractors are organized by ...
متن کاملClassifying extrema using intervals
We present a straightforward and verified method of deciding whether the point x ∈ R, n > 1, such that ∇f(x) = 0, is the local minimizer, maximizer or just a saddle point of a real-valued function f . The method scales linearly with dimensionality of the problem and never produces false results.
متن کاملOn bounding boxes of iterated function system attractors
Before rendering 2D or 3D fractals with iterated function systems, it is necessary to calculate the bounding extent of fractals. We develop a new algorithm to compute the bounding box which closely contains the entire attractor of an iterated function system. r 2003 Elsevier Science Ltd. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2020
ISSN: 0951-7715,1361-6544
DOI: 10.1088/1361-6544/ab8f7b