Boundedness of Riesz Potential Operator on Grand Herz-Morrey Spaces
نویسندگان
چکیده
In this paper, we introduce grand Herz–Morrey spaces with variable exponent and prove the boundedness of Riesz potential operators in these spaces.
منابع مشابه
Multilinear Riesz Potential on Morrey-Herz Spaces with Non-Doubling Measures
The authors consider the multilinear Riesz potential operator defined by Iα,m − → f x ∫ Rd m f1 y1 f2 y2 · · · fm ym /| x−y1, . . . , x−ym |mn−α dμ y1 · · ·dμ ym , where − → f denotes themtuple f1, f2, . . . , fm , m,n the nonnegative integers with n ≥ 2, m ≥ 1, 0 < α < mn, and μ is a nonnegative n-dimensional Borel measure. In this paper, the boundedness for the operator Iα,m on the product of...
متن کاملCBMO Estimates for Multilinear Commutator of Marcinkiewicz Operator in Herz and Morrey-Herz Spaces
In this paper, we establish CBMO estimates for the multilinear commutator related to the Marcinkiewicz operator in Herz and Morrey-Herz spaces.
متن کاملBoundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
The aim of this paper is to establish the vector-valued inequalities for Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g∗μ-functions, and their commutators on the Herz-Morrey spaces with variable exponentMK̇ p,q(·)(R n). By applying the properties of Lp(·)(Rn) spaces and the vector-valued inequalities for Littlewood-Paley operators and their...
متن کاملAnisotropic Herz-morrey Spaces with Variable Exponents
In this paper, the authors introduce the anisotropic Herz-Morrey spaces with two variable exponents and obtain some properties of these spaces. Subsequently as an application, the authors give some boundedness on the anisotropic Herz-Morrey spaces with two variable exponents for a class of sublinear operators, which extend some known results.
متن کاملBoundedness for Multilinear Commutator of Littlewood-paley Operator on Hardy and Herz-hardy Spaces
Let 0 < q < ∞ and Lqloc(R n) = {f q is locally integrable on Rn}. Suppose f ∈ Lloc(R), B = B(x0, r) = {x ∈ Rn : |x − x0| < r} denotes a ball of Rn centered at x0 and having radius r, write fB = |B|−1 ∫ B f(x)dx and f #(x) = supx∈B |B|−1 ∫ B |f(x) − fB|dx < ∞. f is said to belong to BMO(R n), if f# ∈ L∞(Rn) and define ||f ||BMO = ||f||L∞ . Let T be the Calderón-Zygmund singular integral operator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2022
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms11110583