Bounded Solutions of Delay Differential Equations Subject to a Generalized Nonresonance Condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions of Delay-Differential Equations with a Restorative Condition

A global existence theorem is given for the periodic solutions of a class of scalar delay-differential equations satisfying a restorative condition. Properties concerning the period and the amplitude of the slowly oscillating periodic solutions are established. The results are applied to a physiological reflex model exhibiting asymmetry of response. It is shown that the model predicts periodic ...

متن کامل

Bounded Nonoscillatory Solutions for First Order Neutral Delay Differential Equations

This paper deals with the first order neutral delay differential equation (x(t) + a(t)x(t− τ))′ + p(t)f(x(t− α)) +q(t)g(x(t − β)) = 0, t ≥ t0, Using the Banach fixed point theorem, we show the existence of a bounded nonoscillatory positive solution for the equation. Three nontrivial examples are given to illustrate our results. Mathematics Subject Classification: 34K4

متن کامل

Asymptotic Properties of Solutions to Linear Nonautonomous Delay Differential Equations through Generalized Characteristic Equations

We study some properties concerning the asymptotic behavior of solutions to nonautonomous retarded functional differential equations, depending on the knowledge of certain solutions of the associated generalized characteristic equation.

متن کامل

Existence of Nonoscillatory Bounded Solutions for a System of Second-order Nonlinear Neutral Delay Differential Equations

A system of second-order nonlinear neutral delay differential equations ( r1(t) ( x1(t) + P1(t)x1(t− τ1) )′)′ = F1 ( t, x2(t− σ1), x2(t− σ2) ) , ( r2(t) ( x2(t) + P2(t)x2(t− τ2) )′)′ = F2 ( t, x1(t− σ1), x1(t− σ2) ) , where τi > 0, σ1, σ2 ≥ 0, ri ∈ C([t0,+∞),R), Pi(t) ∈ C([t0,+∞),R), Fi ∈ C([t0,+∞)× R2,R), i = 1, 2 is studied in this paper, and some sufficient conditions for existence of nonosc...

متن کامل

Periodicity in a System of Differential Equations with Finite Delay

The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1996

ISSN: 0022-0396

DOI: 10.1006/jdeq.1996.0158