Bounded approximate identities and tensor products

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On bounded weak approximate identities and a new version of them

In this paper, we give a short survey of results and problems concerning the notion of bounded weak approximate identities in Banach algebras. Also, we introduce a new version of approximate identities and give one illuminating example to show the difference.

متن کامل

Bounded Approximate Identities in Ternary Banach Algebras

and Applied Analysis 3 Step 1. Let F {a} be singleton. Then, there are u ∈ U and v ∈ V such that ‖uv‖ < M, and ‖ u, v, a − a‖ < M 1 . 2.2 Letting w uv ◦ uv, then ‖ uv ◦ uv, a − a‖ ‖ u, v, u, v, a − a − u, v, a − a ‖ < . 2.3 Step 2. Let F {a1, a2}. There is a u1, v1 ∈ U × V such that ‖ u1, v1, a1 − a1‖ < / 1 M , and for u1, v1, a2 − a2 ∈ A there is a u2, v2 ∈ U × V such that ‖ u2, v2, u1, v1, a2...

متن کامل

Tensor products with bounded continuous functions

We study the natural inclusions of Cb(X)⊗A into Cb(X,A) and Cb ( X,Cb(Y ) ) into Cb(X × Y ). In particular, excepting trivial cases, both these maps are isomorphisms only when X and Y are pseudocompact. This implies a result of Glicksberg showing that the Stone-Čech compactificiation β(X × Y ) is naturally identified with βX × βY if and only if X and Y are pseudocompact.

متن کامل

Bounded Approximate Character Amenability of Banach Algebras

The bounded approximate version of $varphi$-amenability and character amenability are introduced and studied. These new notions are characterized in several different ways, and some hereditary properties of them are established. The general theory for these concepts is also developed. Moreover, some examples are given to show that these notions are different from the others. Finally, bounded ap...

متن کامل

bivariations and tensor products

the ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in eachcomponent. keeping this in mind, linton and banaschewski with nelson defined and studied the tensor product in an equational category and in a general (concrete) category k, respectively, using bimorphisms, that is, defined via the hom-functor on k. also, the so-called sesquilinear, or on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1972

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700045299