Boundary Value Problems for Singular Elliptic Equations
نویسندگان
چکیده
منابع مشابه
Boundary Value Problems for Elliptic Equations
where án, denotes differentiation in the direction of tlie normal to 8B . As is well known, there are explicit formulas for the solutions of the aboye problems, and one can then give a very careful analysis of the solutions when, say f E LP(áB, do), 1 < p < oo . In both cases, the boundary values are taken in the sense of non-tangential convergence, Le ., if Q E aB, and F(Q) _ F. (Q) _ {X E B1 ...
متن کاملBoundary value problems for elliptic operators with singular drift terms
Let Ω be a Lipschitz domain in R, n ≥ 3, and L = divA∇ − B∇ be a second order elliptic operator in divergence form with real coefficients such that A is a bounded elliptic matrix and the vector field B ∈ Lloc(Ω) is divergence free and satisfies the growth condition dist(X, ∂Ω)|B(X)| ≤ ε1 for ε1 small in a neighbourhood of ∂Ω. For these elliptic operators we will study on the basis of the theory...
متن کاملSingular Higher Order Boundary Value Problems for Ordinary Differential Equations
This paper is somewhat of an extension of the recent work done by Kunkel [6]. Kunkel looked at an extension of Rachu̇nková and Rachu̇nek’s work where they studied a second order singular boundary value problem for the discrete p-Laplacian, φp(x) = |x|x [7]. Kunkel’s results extend theirs to the second order differential case, but only for p = 2, i.e. φ2(x) = x. In this paper, we extend Kunkel’s w...
متن کاملTwo-dimensional Nonlinear Boundary Value Problems for Elliptic Equations
Boundary regularity of solutions of the fully nonlinear boundary value problem F(x,u,Du, D2u) = 0 inn, G(x,u, Du) = 0 on dO is discussed for two-dimensional domains Q. The function F is assumed uniformly elliptic and G is assumed to depend (in a nonvacuous manner) on Du. Continuity estimates are proved for first and second derivatives of u under weak hypotheses for smoothness of F, G, and 0. In...
متن کاملOn Neumann Boundary Value Problems for Some Quasilinear Elliptic Equations
We study the role played by the indefinite weight function a(x) on the existence of positive solutions to the problem −div (|∇u|∇u) = λa(x)|u|u+ b(x)|u|u, x ∈ Ω, ∂u ∂n = 0, x ∈ ∂Ω , where Ω is a smooth bounded domain in Rn, b changes sign, 1 < p < N , 1 < γ < Np/(N − p) and γ 6= p. We prove that (i) if ∫ Ω a(x) dx 6= 0 and b satisfies another integral condition, then there exists some λ∗ suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2011
ISSN: 0035-7596
DOI: 10.1216/rmj-2011-41-2-555