Boundary maps, germs and quasi-regular representations

نویسندگان

چکیده

We investigate the tracial and ideal structures of C ? -algebras quasi-regular representations stabilizers boundary actions. Our main tool is notion maps, namely ?-equivariant unital completely positive maps from ?- to ( ? F ? ) , where denotes Furstenberg a group ?. For unitary representation ? coming groupoid germs action, we show that there unique map on . Consequently, describe structure for any ?-boundary X characterize simplicity generated by ? / x associated stabilizer subgroups ? As an application, -algebra T Thompson's groups ? does not admit traces simple.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Behavior of Quasi-regular Maps and the Isodiametric Profile

We study obstructions for a quasi-regular mapping f : M → N of finite degree between Riemannian manifolds to blow up on or collapse on a non-trivial part of the boundary of M .

متن کامل

Quasi-regular Representations and Rapid Decay

We study property RD in terms of rapid decay of matrix coefficients. We give new formulations of property RD in terms of a L-integrability condition of a Banach representation. Combining this new definition with the existence of cyclic subgroups of exponential growth in non-uniform lattices in semisimple Lie groups, we deduce that there exist matrix coefficients associated to several kinds of q...

متن کامل

Distinguished positive regular representations

Let $G$ be a tamely ramified reductive $p$-adic‎ ‎group‎. ‎We study distinction of a class of irreducible admissible representations‎ ‎of $G$ by the group of fixed points $H$ of an involution‎ ‎of $G$‎. ‎The representations correspond to $G$-conjugacy classes of‎ ‎pairs $(T,phi)$‎, ‎where $T$ is a‎ ‎tamely ramified maximal torus of $G$ and $phi$ is a quasicharacter‎ ‎of $T$ whose restriction t...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.108130