Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter 3: Autoregressive and moving average processes

2 Moving average models Definition. The moving average model of order q, or MA(q), is defined to be Xt = t + θ1 t−1 + θ2 t−2 + · · ·+ θq t−q, where t i.i.d. ∼ N(0, σ). Remarks: 1. Without loss of generality, we assume the mean of the process to be zero. 2. Here θ1, . . . , θq (θq 6= 0) are the parameters of the model. 3. Sometimes it suffices to assume that t ∼WN(0, σ). Here we assume normality...

متن کامل

Parameter Estimates for Fractional Autoregressive Spatial Processes

A binomial-type operator on a stationary Gaussian process is introduced in order to model long memory in the spatial context. Consistent estimators of model parameters are demonstrated. In particular , it is shown thatˆdN − d = OP ((Log N) 3 N), where d = (d1, d2) denotes the long memory parameter.

متن کامل

The Integration Order of Vector Autoregressive Processes

We show that the order of integration of a vector autoregressive process is equal to the difference between the multiplicity of the unit root in the characteristic equation and the multiplicity of the unit root in the adjoint matrix polynomial. The equivalence with the standard I(1) and I(2) conditions (Johansen, 1996) is proved and polynomial cointegration discussed in the general setup.

متن کامل

Bootstrapping continuous-time autoregressive processes

We develop a bootstrap procedure for Lévy-driven continuous-time autoregressive (CAR) processes observed at discrete regularly-spaced times. It is well known that a regularly sampled stationary Ornstein–Uhlenbeck process [i.e. a CAR(1) process] has a discrete-time autoregressive representation with i.i.d. noise. Based on this representation a simple bootstrap procedure can be found. Since regul...

متن کامل

Nonlinear autoregressive and nonlinear autoregressive moving average model parameter estimation by minimizing hypersurface distance

The least squares (LS) can be used for nonlinear autoregressive (NAR) and nonlinear autoregressive moving average (NARMA) parameter estimation. However, for nonlinear cases, the LS results in biased parameter estimation due to its assumption that the independent variables are noise free. The total least squares (TLS) is another method that can used for nonlinear parameter estimation to increase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1996

ISSN: 0047-259X

DOI: 10.1006/jmva.1996.0034