Bootstrap Equilibrium and Probabilistic Speaker Representation Learning for Self-Supervised Speaker Verification

نویسندگان

چکیده

In this paper, we propose self-supervised speaker representation learning strategies, which comprise of a bootstrap equilibrium in the front-end and an uncertainty-aware probabilistic embedding training back-end. stage, learn representations via scheme with uniformity regularization term. back-end embeddings are estimated by maximizing mutual likelihood score between speech samples belonging to same speaker, provide not only but also data uncertainty. Experimental results show that proposed strategy can effectively help outperforms conventional methods based on contrastive learning. Also, demonstrate integrated two-stage framework further improves verification performance VoxCeleb1 test set terms EER MinDCF.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between supervised and unsupervised learning of probabilistic linear discriminant analysis mixture models for speaker verification

We present a comparison of speaker verification systems based on unsupervised and supervised mixtures of probabilistic linear discriminant analysis (PLDA) models. This paper explores current applicability of unsupervised mixtures of PLDA models with Gaussian priors in a total variability space for speaker verification. Moreover, we analyze the experimental conditions under which this applicatio...

متن کامل

Deep Speaker Feature Learning for Text-Independent Speaker Verification

Recently deep neural networks (DNNs) have been used to learn speaker features. However, the quality of the learned features is not sufficiently good, so a complex back-end model, either neural or probabilistic, has to be used to address the residual uncertainty when applied to speaker verification, just as with raw features. This paper presents a convolutional timedelay deep neural network stru...

متن کامل

Using Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems

Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.

متن کامل

Improved speaker verification through probabilistic subspace adaptation

In this paper we propose a new adaptation technique for improved text-independent speaker verification with limited amounts of training data using Gaussian mixture models (GMMs). The technique, referred to as probabilistic subspace adaptation (PSA), employs a probabilistic subspace description of how a client’s parametric representation (i.e. GMM) is allowed to vary. Our technique is compared t...

متن کامل

Learning the decision function for speaker verification

This paper explores the possibility to replace the usual thresholding decision rule of log likelihood ratios used in speaker verification systems by more complex and discriminant decision functions based for instance on Linear Regression models or Support Vector Machines. Current speaker verification systems, based on generative models such as HMMs or GMMs, can indeed easily be adapted to use s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3137190