Boosting joint models for longitudinal and time-to-event data
نویسندگان
چکیده
منابع مشابه
Boosting joint models for longitudinal and time-to-event data.
Joint models for longitudinal and time-to-event data have gained a lot of attention in the last few years as they are a helpful technique clinical studies where longitudinal outcomes are recorded alongside event times. Those two processes are often linked and the two outcomes should thus be modeled jointly in order to prevent the potential bias introduced by independent modeling. Commonly, join...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولComparison of time to the event and nonlinear regression models in the analysis of germination data
Extended abstract Introduction: Numerous studies are being carried out to reveal the effects of different treatments on the germination of seeds from various plants. The most commonly used method of analysis is the nonlinear regression which estimates germination parameters. Although the nonlinear regression has been performed based on different models, some serious problems in its structure...
متن کاملJoint Models of Longitudinal and Time-to-Event Data Using Gibbs Sampling
Jointly modelling related longitudinal and time-to-event data can offer advantages over separate modelling. We consider three models for longitudinal/time-to-event data: 1. random slopes and intercepts/constant hazard 2. random slopes and intercepts/step function hazard 3. random intercepts, fixed slope and IOU errors/constant hazard. Methods for simulating data from these models are outlined. ...
متن کاملDynamic predictions using flexible joint models of longitudinal and time‐to‐event data
Joint models for longitudinal and time-to-event data are particularly relevant to many clinical studies where longitudinal biomarkers could be highly associated with a time-to-event outcome. A cutting-edge research direction in this area is dynamic predictions of patient prognosis (e.g., survival probabilities) given all available biomarker information, recently boosted by the stratified/person...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrical Journal
سال: 2017
ISSN: 0323-3847
DOI: 10.1002/bimj.201600158