BLOW-UP OF THE NONEQUIVARIANT ()-DIMENSIONAL WAVE MAP
نویسندگان
چکیده
منابع مشابه
On the existence of smooth self-similar blow-up profiles for the wave-map equation
Consider the equivariant wave map equation from Minkowski space to a rotationnally symmetric manifold N which has an equator (example: the sphere). In dimension 3, this article presents a necessary and sufficient condition on N for the existence of a smooth self-similar blow up profile. More generally, we study the relation between the minimizing properties of the equator map for the Dirichlet ...
متن کاملSmooth type II blow up solutions to the four dimensional energy critical wave equation
We exhibit C∞ type II blow up solutions to the focusing energy critical wave equation in dimension N = 4. These solutions admit near blow up time a decomposiiton u(t, x) = 1 λ N−2 2 (t) (Q+ ε(t))( x λ(t) ) with ‖ε(t), ∂tε(t)‖Ḣ1×L2 ≪ 1 where Q is the extremizing profile of the Sobolev embedding Ḣ → L∗ , and a blow up speed λ(t) = (T − t)e− √ |log(T−t)|(1+o(1)) as t → T.
متن کاملBlow up for the Semilinear Wave Equation in Schwarzschild Metric
We study the semilinear wave equation in Schwarzschild metric (3 + 1 dimensional space time). First, we establish that the problem is locally well posed in H for any σ > 1; then we prove the blow up of the solution for every p > 1 and non negative initial data. The work is dedicated to prof. Yvonne Choquet Bruhat in occasion of her 80th year.
متن کاملOn the blow-up of four-dimensional Ricci flow singularities
In this paper we prove a conjecture by Feldman–Ilmanen–Knopf (2003) that the gradient shrinking soliton metric they constructed on the tautological line bundle over CP is the uniform limit of blow-ups of a type I Ricci flow singularity on a closed manifold. We use this result to show that limits of blow-ups of Ricci flow singularities on closed four-dimensional manifolds do not necessarily have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The ANZIAM Journal
سال: 2013
ISSN: 1446-1811,1446-8735
DOI: 10.1017/s1446181113000400