Blocks of profinite groups with cyclic defect group

نویسندگان

چکیده

We demonstrate that the blocks of a profinite group whose defect groups are cyclic have Brauer tree algebra structure analogous to case finite groups. show further block with Z p $\mathbb {Z}_{p}$ is star type.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On defect groups for generalized blocks of the symmetric group

In a paper of 2003, B. Külshammer, J. B. Olsson and G. R. Robinson defined l-blocks for the symmetric groups, where l > 1 is an arbitrary integer. In this paper, we give a definition for the defect group of the principal l-block. We then check that, in the Abelian case, we have an analogue of one of M. Broué’s conjectures.

متن کامل

N ov 2 00 3 On blocks with cyclic defect group and their head orders

It is shown that [Ple83, Theorem 8.5] describes blocks of cyclic defect group up to Morita equivalence. In particular such a block is determined by its planar embedded Brauer tree. Applying the radical idealizer process the head order of such blocks is calculated explicitly.

متن کامل

Profinite Groups

γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...

متن کامل

Modular Representation Theory of Blocks with Trivial Intersection Defect Groups

We show that Uno’s refinement of the projective conjecture of Dade holds for every block whose defect groups intersect trivially modulo the maximal normal p-subgroup. This corresponds to the block having p-local rank one as defined by Jianbei An and Eaton. An immediate consequence is that Dade’s projective conjecture, Robinson’s conjecture, Alperin’s weight conjecture, the Isaacs– Navarro conje...

متن کامل

On blocks with abelian defect groups of small rank

Let B be a p-block of a finite group with abelian defect group D. Suppose that D has no elementary abelian direct summand of order p. Then we show that B satisfies Brauer’s k(B)-Conjecture (i. e. k(B) ≤ |D|). Together with former results, it follows that Brauer’s k(B)-Conjecture holds for all blocks of defect at most 3. We also obtain some related results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2022

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12645