Block theory and Brauer's first main theorem for profinite groups
نویسندگان
چکیده
We develop the local-global theory of blocks for profinite groups. Given a field k characteristic p and group G, one may express completed algebra k[[G]] as product ∏i∈IBi closed indecomposable algebras, called G. To each block B G we associate pro-p subgroup defect B, unique up to conjugacy in give several characterizations analogy with groups finite Our main theorem is version Brauer's first theorem: correspondence between D normalizer NG(D) D.
منابع مشابه
Profinite Monads, Profinite Equations, and Reiterman's Theorem
Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper Reiterman’s theorem is generalised to finite Eilenberg-Moore algebras for a monad T on a variety D of (ordered) algebras: ...
متن کاملProfinite Groups
γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...
متن کاملFusion systems for profinite groups
We introduce the notion of a pro-fusion system on a pro-p group, which generalizes the notion of a fusion system on a finite p-group. We also prove a version of Alperin’s Fusion Theorem for pro-fusion systems.
متن کاملCohomology of Profinite Groups
A directed set I is a partially ordered set such that for all i, j ∈ I there exists a k ∈ I such that k ≥ i and k ≥ j. An inverse system of groups is a collection of groups {Gi} indexed by a directed set I together with group homomorphisms πij : Gi −→ Gj whenever i ≥ j such that πii = idGi and πjk ◦ πij = πik. Let H be a group. We call a family of homomorphisms {ψi : H −→ Gi : i ∈ I} compatible...
متن کاملCohomology of Profinite Groups
The aim of this thesis is to study profinite groups of type FPn. These are groups G which admit a projective resolution P of Ẑ as a ẐJGK-module such that P0, . . . , Pn are finitely generated, so this property can be studied using the tools of profinite group cohomology. In studying profinite groups it is often useful to consider their cohomology groups with profinite coefficients, but pre-exis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2022
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2021.108121