Blind Separation of Underdetermined Convolutive Mixtures Using Their Time–Frequency Representation
نویسندگان
چکیده
منابع مشابه
Underdetermined Blind Separation of Convolutive Mixtures of Speech Using Time-Frequency Mask and Mixing Matrix Estimation
This paper focuses on the underdetermined blind source separation (BSS) of three speech signals mixed in a real environment from measurements provided by two sensors. To date, solutions to the underdetermined BSS problem have mainly been based on the assumption that the speech signals are sufficiently sparse. They involve designing binary masks that extract signals at time-frequency points wher...
متن کاملBlind separation of convolutive image mixtures
Convolutive mixtures of images are common in photography of semi-reflections. They also occur in microscopy and tomography. Their formation process involves focusing on an object layer, over which defocused layers are superimposed. We seek blind source separation (BSS) of such mixtures. However, achieving this by direct optimization of mutual information is very complex and suffers from local m...
متن کاملA probabilistic approach for blind source separation of underdetermined convolutive mixtures
There are very few techniques that can separate signals from the convolutive mixture in the underdetermined case. We have developed a method that uses overcomplete expansion of the signal created with a time-frequency transform and that also uses the property of sparseness and a Laplacian source density model to obtain the source signals from the instantaneously mixed signals in the underderdet...
متن کاملSeparating Underdetermined Convolutive Speech Mixtures
A limitation in many source separation tasks is that the number of source signals has to be known in advance. Further, in order to achieve good performance, the number of sources cannot exceed the number of sensors. In many real-world applications these limitations are too restrictive. We propose a method for underdetermined blind source separation of convolutive mixtures. The proposed framewor...
متن کاملMAP-Based Underdetermined Blind Source Separation of Convolutive Mixtures by Hierarchical Clustering and ℓ1-Norm Minimization
We address the problem of underdetermined BSS. While most previous approaches are designed for instantaneous mixtures, we propose a time-frequency-domain algorithm for convolutive mixtures. We adopt a two-step method based on a general maximum a posteriori (MAP) approach. In the first step, we estimate the mixing matrix based on hierarchical clustering, assuming that the source signals are suff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Audio, Speech, and Language Processing
سال: 2007
ISSN: 1558-7916
DOI: 10.1109/tasl.2007.898455