Blanket coverage

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Markov Blanket Structures

Learning Markov blanket (MB) structures has proven useful in performing feature selection, learning Bayesian networks (BNs), and discovering causal relationships. We present a formula for efficiently determining the number of MB structures given a target variable and a set of other variables. As expected, the number of MB structures grows exponentially. However, we show quantitatively that ther...

متن کامل

Restoration of blanket peatlands.

There is concern that ecosystem services provided by blanket peatlands have come under threat due to increasing degradation. Blanket peatlands are subject to a wide range of drivers of degradation and are topographically variable. As a result, many degradation forms can develop, including those resulting from eroding artificial drainage, incising gullies and areas of bare peat. Many degraded bl...

متن کامل

Bayesian Markov Blanket Estimation

This paper considers a Bayesian view for estimating a sub-network in a Markov random field. The sub-network corresponds to the Markov blanket of a set of query variables, where the set of potential neighbours here is big. We factorize the posterior such that the Markov blanket is conditionally independent of the network of the potential neighbours. By exploiting this blockwise decoupling, we de...

متن کامل

Progress on Dcll Blanket Concept

General Atomics, PO Box 85608, San Diego, California 92186-5608, [email protected] University of California Los Angeles, Los Angeles, California 90095-1597 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Pacific Northwest National Laboratory, Richland, Washington 99352 University of Wisconsin Madison, Wisconsin 53706 Idaho National Laboratory, Idaho Falls, Idaho 83515 Ultramet Inc....

متن کامل

Inference in Markov Blanket Networks

Bayesian networks have been successfully used to model joint probabilities in many cases. When dealing with continuous variables and nonlinear relationships neural networks can be used to model conditional densities as part of a Bayesian network. However, doing inference can then be com-putationally expensive. Also, information is implicitly passed backwards through neural networks, i.e. from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 1994

ISSN: 0028-0836,1476-4687

DOI: 10.1038/372214d0