Bipartite-ness under smooth conditions

نویسندگان

چکیده

Abstract Given a family $\mathcal{F}$ of bipartite graphs, the Zarankiewicz number $z(m,n,\mathcal{F})$ is maximum edges in an $m$ by $n$ graph $G$ that does not contain any member as subgraph (such called -free ). For $1\leq \beta \lt \alpha 2$ , graphs $(\alpha,\beta )$ - smooth if for some $\rho \gt 0$ and every $m\leq n$ $z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta . Motivated their work on conjecture Erdős Simonovits compactness classic result Andrásfai, Sós, Allen, Keevash, Sudakov Verstraëte proved -smooth there exists $k_0$ such all odd $k\geq k_0$ sufficiently large -vertex $\mathcal{F}\cup \{C_k\}$ with minimum degree at least (\frac{2n}{5}+o(n))^{\alpha -1}$ bipartite. In this paper, we strengthen showing real $\delta Furthermore, our holds under more relaxed notion smoothness, which include families consisting single $K_{s,t}$ when $t\gg s$ We also prove analogous $C_{2\ell }$ $\ell \geq complements Verstraëte.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical copula processes under serial dependence and weak smooth - ness conditions

The empirical copula process plays a central role for statistical inference on copulas. Recently, Segers (2012) investigated the asymptotic behavior of this process under non-restrictive smoothness assumptions for the case of i.i.d. random variables. In the first part of the talk, we extend his main result to the case of serial dependent random variables by means of the powerful and elegant fun...

متن کامل

Practical Conditions for Well-behaved-ness of Anisotropic Voronoi Diagrams

Recently, simple conditions for well-behaved-ness of anisotropic Voronoi diagrams have been proposed. While these conditions ensure well-behaved-ness of two types of practical anisotropic Voronoi diagrams, as well as the geodesic-distance one, in any dimension, they are both prohibitively expensive to evaluate, and not well-suited for typical problems in approximation or optimization. We propos...

متن کامل

Hall Conditions for Edge-weighted Bipartite Graphs

A weighted variant of Hall’s condition for the existence of matchings is shown to be equivalent to the existence of a matching in a lexicographic product. This is used to introduce characterizations of those bipartite graphs whose edges may be replicated so as to yield semiregular multigraphs or, equivalently, semiregular edge-weightings. Such bipartite graphs will be called semiregularizable. ...

متن کامل

Decomposition of bipartite graphs under degree constraints

Let G = (A, 6; E ) be a bipartite graph. Let el, e2 be nonnegative integers, and f l , f2 nonnegative integer-valued functions on V(G) such that ei I I € \ 5 el + e2 and f f ( v ) 5 d ( v ) 5 f , (v ) + f2(v) for all v E V(G) (i = 1, 2). Necessary and sufficient conditions are obtained for G to admit a decomposition in spanning subgraphs GI = (A, 8 ; El) and G2 = (A, 6; E2) such that lEil I el ...

متن کامل

On Bipartite Matching under the RMS Distance

Given two sets A and B of n points each in R, we study the problem of computing a matching between A and B that minimizes the root mean square (rms) distance of matched pairs. We can compute an optimal matching in O(n2+δ) time, for any δ > 0, and an ε-approximation in time O((n/ε)3/2 log n). If the set B is allowed to move rigidly to minimize the rms distance, we can compute a rigid motion of B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorics, Probability & Computing

سال: 2023

ISSN: ['0963-5483', '1469-2163']

DOI: https://doi.org/10.1017/s0963548323000019