Biodegradable Polyester Materials Containing Gallates
نویسندگان
چکیده
منابع مشابه
Editorial: Biodegradable Materials
This Special Issue "Biodegradable Materials" features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In...
متن کاملProduction system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum.
A biosynthetic pathway for poly(3-hydroxybutyrate) [P(3HB)] production by Corynebacterium glutamicum was developed by introducing the phbCAB operon derived from Ralstonia eutropha. P(3HB) synthase activity was detected in this recombinant C. glutamicum carrying a cell surface protein gene promoter. Intracellular P(3HB) was microscopically observed as inclusion granules and its content was calcu...
متن کاملProduction of Biodegradable Polyester by a Transgenic Tobacco.
The acetoacetyl-CoA reductase gene (phbB) of Ralstonia eutropha and the poly[(R)-(-)-3-hydroxyalkanoate] synthase gene (phaCAC) of Aeromonas caviae were introduced into tobacco plant by Agrobacterium mediated transformation method. The resulting transgenic tobacco expressed both introduced genes and the expression of these genes was confirmed by enzymatic analysis and western blotting. GC-MS an...
متن کاملDevelopment of biodegradable crosslinked urethane-doped polyester elastomers.
Traditional crosslinked polyester elastomers are inherently weak, and the strategy of increasing crosslink density to improve their mechanical properties makes them brittle materials. Biodegradable polyurethanes, although strong and elastic, do not fare well in dynamic environments due to the onset of permanent deformation. The design and development of a soft, strong and completely elastic (10...
متن کاملA new biodegradable polyester elastomer for cartilage tissue engineering.
The objective of this study is to assess whether a new biodegradable elastomer, poly(1,8-octanediol citrate) (POC), would be a suitable material to engineer elastomeric scaffolds for cartilage tissue engineering. Porous POC scaffolds were prepared via the salt-leaching method and initially assessed for their ability to rapidly recover from compressive deformation (% recovery ratio). Controls co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymers
سال: 2020
ISSN: 2073-4360
DOI: 10.3390/polym12030677