Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels
نویسندگان
چکیده
منابع مشابه
Synthesis of enzyme-degradable, peptide-cross-linked dextran hydrogels.
Hydrogels derived from synthetic polymers have been previously engineered to degrade under the activity of matrix metalloproteinases (MMPs). It is believed that these systems can act as extracellular-matrix (ECM) equivalents mimicking the degradation and remodeling of the ECM through the activity of cell-secreted enzymes. In this study, MMP-sensitive hydrogels derived from dextran were develope...
متن کاملSynthesis and characterization of new injectable and degradable dextran-based hydrogels
Injectable and degradable hydrogels are very interesting networks for drug delivery and cell transplantation applications since they can be administered in the human body in a minimally invasive way. In most cases, the crosslinking reaction occurs by photopolymerisation or free radical polymerisation; however, the use of chemical initiators may promote cell death. In the current work, injectabl...
متن کاملProtease degradable electrospun fibrous hydrogels
Electrospun nanofibres are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases. Here we synthesize reactive macromers that contain protease-cleavable and fluorescent ...
متن کاملSynthesis of cell-adhesive dextran hydrogels and macroporous scaffolds.
Dextran hydrogels have been previously investigated as drug delivery vehicles and more recently as macroporous scaffolds; however, the non-cell-adhesive nature of dextran has limited its utility for tissue engineering. To overcome this limitation, macroporous scaffolds of methacrylated dextran (Dex-MA) copolymerized with aminoethyl methacrylate (AEMA) were synthesized, thereby introducing prima...
متن کاملHighly Stereoselective Biocatalytic Synthesis of Key Cyclopropane Intermediate to Ticagrelor.
Extending the scope of biocatalysis to important non-natural reactions such as olefin cyclopropanation will open new opportunities for replacing multi-step chemical syntheses of pharmaceutical intermediates with efficient, clean, and highly selective enzyme-catalyzed processes. In this work, we engineered the truncated globin of Bacillus subtilis for the synthesis of a cyclopropane precursor to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomaterials
سال: 2005
ISSN: 0142-9612
DOI: 10.1016/j.biomaterials.2004.11.051