منابع مشابه
A one-pot aqueous synthesis of high-luminescent thiol-capped CdTe and its bioapplication.
Our study described a synthesis of thiol-capped high-luminescent (quantum yield as high as 80%) CdTe quantum dots (QDs) with a facile method in aqueous phase. The fluorescence of the as-prepared CdTe QDs could be tuned from 500 nm to 650 nm. More importantly, after beta-actin conjugation, the CdTe QDs were successfully conjugated with live cells to observe their configurations, demonstrating th...
متن کاملCurrent Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication
Along with the development of science and technology, lanthanide-doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, ...
متن کاملOne-Pot Green Synthesis and Bioapplication ofl-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles
Water-solublel-arginine-capped Fe3O4 nanoparticles were synthesized using a one-pot and green method. Nontoxic, renewable and inexpensive reagents including FeCl3,l-arginine, glycerol and water were chosen as raw materials. Fe3O4 nanoparticles show different dispersive states in acidic and alkaline solutions for the two distinct forms of surface bindingl-arginine. Powder X-ray diffraction and X...
متن کاملPreparation and bioapplication of high-quality, water-soluble, biocompatible, and near-infrared-emitting CdSeTe alloyed quantum dots.
A facile method is developed for the preparation of high-quality, water-soluble, and near-infrared (NIR)-emitting CdSeTe alloyed quantum dots (AQdots) with L-cysteine as the capping agent. By changing the size and the composition of AQdots the photoluminescent quantum yield (QY) can reach as high as 53% and the emission color can be tuned between visible and NIR regions (580-814 nm). Furthermor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Today
سال: 2005
ISSN: 1369-7021
DOI: 10.1016/s1369-7021(05)00892-8