Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers
نویسندگان
چکیده
منابع مشابه
Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers
The concentrically-layered photonic structure found in the tropical fruit Margaritaria nobilis serves as inspiration for photonic fibers with mechanically tunable band-gap. The fibers show the spectral filtering capabilities of a planar Bragg stack while the microscopic curvature decreases the strong directional chromaticity associated with flat multilayers. Elongation of the elastic fibers res...
متن کاملElectrically tunable band gap in silicene
We report calculations of the electronic structure of silicene and the stability of its weakly buckled honeycomb lattice in an external electric field oriented perpendicular to the monolayer of Si atoms. The electric field produces a tunable band gap in the Dirac-type electronic spectrum, the gap being suppressed by a factor of about eight by the high polarizability of the system. At low electr...
متن کاملTunable photonic delay lines in optical fibers
A R TI C LE Abstract A comprehensive overview is presented about optical fiber-based tunable photonic delay lines, which have been steadily developed over the last decade for the realization of all-optically controlled timing functions. The most widely used techniques, such as those based on slow & fast light and wavelength conversion associated to dispersion, are described and their physical l...
متن کاملBio-inspired micro-to-nanoporous polymers with tunable stiffness
Background: Inspired by structural hierarchies and the related excellent mechanical properties of biological materials, we created a smoothly graded micro- to nanoporous structure from a thermoplastic polymer. Results: The viscoelastic properties for the different pore sizes were investigated in the glassy regime by dynamic flat-punch indentation. Interestingly, the storage modulus was observed...
متن کاملBio-Inspired Flexible Flapping Wings with Elastic Deformation
Over the last decades, there has been great interest in understanding the aerodynamics of flapping flight and development of flapping wing Micro Air Vehicles (FWMAVs). The camber deformation and twisting has been demonstrated quantitatively in a number of insects, but making artificial wings that mimic those features is a challenge. This paper reports the development and characterization of art...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials
سال: 2013
ISSN: 0935-9648
DOI: 10.1002/adma.201203529