Bilinear representation theorem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bilinear version of Orlicz-Pettis theorem

Given three Banach spaces X, Y and Z and a bounded bilinear map B : X×Y → Z, a sequence x = (xn)n ⊆ X is called B-absolutely summable if ∑∞ n=1 ‖B(xn, y)‖Z < ∞ for any y ∈ Y . Connections of this space with `weak(X) are presented. A sequence x = (xn)n ⊆ X is called B-unconditionally summable if ∑∞ n=1 |〈B(xn, y), z∗〉| < ∞ Preprint submitted to Elsevier 21 December 2007 for any y ∈ Y and z∗ ∈ Z∗...

متن کامل

Modulation Invariant Bilinear T(1) Theorem

We prove a T(1) theorem for bilinear singular integral operators (trilinear forms) with a one-dimensional modulation symmetry.

متن کامل

A homomorphism theorem for bilinear multipliers

In this paper we prove an abstract homomorphism theorem for bilinear multipliers in the setting of locally compact Abelian (LCA) groups. We also provide some applications. In particular, we obtain a bilinear abstract version of K. de Leeuw’s theorem for bilinear multipliers of strong and weak type. We also obtain necessary conditions on bilinear multipliers on non-compact LCA groups, yielding b...

متن کامل

Inversion Theorem for Bilinear Hilbert Transform

where f ∈ L2(R) and g ∈ L∞(R), respectively f ∈ Lp1(R) and g ∈ Lp2(R), 1 < p1, p2 <∞. Their main result is the affirmative answer on the Calderon conjecture, first for p1 = 2, p2 = ∞ ([5]), then for p1, p2 ∈ (1,∞). Let 2/3 < p = p1p2 p1+p2 or p1 = 2, p2 = ∞ and p = 2. Then their main result is ||Hα(f, a)||Lp ≤ C||f ||Lp1 ||a||Lp2 , f ∈ L p1, a ∈ Lp2, where C > 0 depends on α, p1, p2. We refer t...

متن کامل

Representation Theorem for Stacks

In this paper i is a natural number and x is a set. Let A be a set and let s1, s2 be finite sequences of elements of A. Then s1s2 is an element of A∗. Let A be a set, let i be a natural number, and let s be a finite sequence of elements of A. Then s i is an element of A∗. The following two propositions are true: (1) ∅ i = ∅. (2) Let D be a non empty set and s be a finite sequence of elements of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2018

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7505