Bilevel Polynomial Programs and Semidefinite Relaxation Methods
نویسندگان
چکیده
منابع مشابه
Convergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems
In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper and the lower level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a ...
متن کاملSemidefinite relaxation for dominating set
‎It is a well-known fact that finding a minimum dominating set and consequently the domination number of a general graph is an NP-complete problem‎. ‎In this paper‎, ‎we first model it as a nonlinear binary optimization problem and then extract two closely related semidefinite relaxations‎. ‎For each of these relaxations‎, ‎different rounding algorithm is exp...
متن کاملSparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems
SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP) relaxation method proposed for polynomial optimization problems (POPs) in the recent paper by Waki et al. The sparse SDP relaxation is based on “a hierarchy of LMI relaxations of increasing dimensions” by Lasserre, and exploits a sparsity structure of polynomials in POPs. The efficiency of SparsePOP to compute bound...
متن کاملSuccessive Linearization Methods for Nonlinear Semidefinite Programs
We present a successive linearization method with a trust region-type globalization for the solution of nonlinear semidefinite programs. At each iteration, the method solves a quadratic semidefinite program, which can be converted to a linear semidefinite program with a second order cone constraint. A subproblem of this kind can be solved quite efficiently by using some recent software for semi...
متن کاملOptimizing a polyhedral-semidefinite relaxation of completely positive programs
It has recently been shown (Burer, Math Program 120:479–495, 2009) that a large class of NP-hard nonconvex quadratic programs (NQPs) can be modeled as so-called completely positive programs, i.e., the minimization of a linear function over the convex cone of completely positive matrices subject to linear constraints. Such convex programs are NP-hard in general. A basic tractable relaxation is g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2017
ISSN: 1052-6234,1095-7189
DOI: 10.1137/15m1052172