Biharmonic Maps from Tori into a 2-Sphere

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biharmonic maps from R into a Riemannian manifold

For a domain R and a Riemannian manifold N R. If u 2 W ( ; N) is an extrinsic (or intrinsic, respectively) biharmonic map. Then u 2 C( ; N). x

متن کامل

Stationary biharmonic maps from R into a Riemannian manifold

We prove that a stationary extrinsic (or intrinsic, respectively) biharmonic map u 2 W ( ; N) from R into a Riemnanian manifold N is smooth away from a closed set of (m 4)-dimensional Hausdor measure zero. x

متن کامل

Energy identity for a class of approximate biharmonic maps into sphere in dimension four

We consider in dimension four weakly convergent sequences of approximate biharmonic maps into sphere with bi-tension fields bounded in L for some p > 1. We prove an energy identity that accounts for the loss of Hessian energies by the sum of Hessian energies over finitely many nontrivial biharmonic maps on R.

متن کامل

Remarks on biharmonic maps into spheres

We prove an apriori estimate in Morrey spaces for both intrinsic and extrinsic biharmonic maps into spheres. As applications, we prove an energy quantization theorem for biharmonic maps from 4-manifolds into spheres and a partial regularity for stationary intrinsic biharmonic maps into spheres. x

متن کامل

Biharmonic Maps into Sol and Nil Spaces

In this paper, we study biharmonic maps into Sol and Nil spaces, two model spaces of Thurston's 3-dimensional geometries. We characterize non-geodesic biharmonic curves in Sol space and prove that there exists no non-geodesic biharmonic helix in Sol space. We also show that a linear map from a Eu-clidean space into Sol or Nil space is biharmonic if and only if it is a harmonic map, and give a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Annals of Mathematics, Series B

سال: 2018

ISSN: 0252-9599,1860-6261

DOI: 10.1007/s11401-018-0101-9