Biharmonic maps from a complete Riemannian manifold into a non-positively curved manifold

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biharmonic maps from R into a Riemannian manifold

For a domain R and a Riemannian manifold N R. If u 2 W ( ; N) is an extrinsic (or intrinsic, respectively) biharmonic map. Then u 2 C( ; N). x

متن کامل

Stationary biharmonic maps from R into a Riemannian manifold

We prove that a stationary extrinsic (or intrinsic, respectively) biharmonic map u 2 W ( ; N) from R into a Riemnanian manifold N is smooth away from a closed set of (m 4)-dimensional Hausdor measure zero. x

متن کامل

A Positively Curved Manifold Homeomorphic

Spaces of positive curvature play a special role in geometry. Although the class of manifolds with positive (sectional) curvature is expected to be relatively small, so far there are only a few known obstructions. Moreover, for closed simply connected manifolds these coincide with the known obstructions to nonnegative curvature which are: (1) the Betti number theorem of Gromov which asserts tha...

متن کامل

Biharmonic Green domains in a Riemannian manifold

Let R be a Riemannian manifold without a biharmonic Green function defined on it and Ω a domain in R. A necessary and sufficient condition is given for the existence of a biharmonic Green function on Ω.

متن کامل

Optimal Regularity of Harmonic Maps from a Riemannian Manifold into a Static Lorentzian Manifold

positive function. In such a case, we write N = N0 ×β R. In this paper we consider the case where N0 is compact. We may assume, by Nash-Moser theorem, N0 is a submanifold of R for some k > 1. By the compactness of N0, there exist constants βmin, βmax > 0 such that βmin ≤ β(x) ≤ βmax for all x ∈ N0. Let M be a Riemannian manifold with non-empty boundary ∂M . For a map w = (u, t) : M → N0 ×β R, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2014

ISSN: 0232-704X,1572-9060

DOI: 10.1007/s10455-014-9410-8