Biharmonic equations with improved subcritical polynomial growth and subcritical exponential growth

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Equations and Systems with Subcritical and Critical Exponential Growth Without the Ambrosetti–Rabinowitz Condition

In this paper, we prove the existence of nontrivial nonnegative solutions to a class of elliptic equations and systems which do not satisfy the Ambrosetti– Rabinowitz (AR) condition where the nonlinear terms are superlinear at 0 and of subcritical or critical exponential growth at ∞. The known results without the AR condition in the literature only involve nonlinear terms of polynomial growth. ...

متن کامل

Existence of Nontrivial Solutions to Polyharmonic Equations with Subcritical and Critical Exponential Growth

The main purpose of this paper is to establish the existence of nontrivial solutions to semilinear polyharmonic equations with exponential growth at the subcritical or critical level. This growth condition is motivated by the Adams inequality [1] of Moser-Trudinger type. More precisely, we consider the semilinear elliptic equation (−∆) u = f(x, u), subject to the Dirichlet boundary condition u ...

متن کامل

Four nontrivial solutions for subcritical exponential equations

We show that a semilinear Dirichlet problem in bounded domains of R in presence of subcritical exponential nonlinearities has four nontrivial solutions near resonance. 2000AMS subject classification: 35J65, 35J20, 49J40

متن کامل

Subcritical crack growth law and its consequences

For brittle failures, the probability distribution of structural strength and lifetime are known to be Weibullian, in which case the knowledge of the mean and standard deviation suffices to determine the loading or time corresponding to a tolerable failure probability such as 10−6. Unfortunately, this is not so for quasibrittle structures, characterized by material inhomogeneities that are not ...

متن کامل

Perturbation from symmetry and multiplicity of solutions for elliptic problems with subcritical exponential growth in R

We consider the following boundary value problem    −∆u = g(x, u) + f (x, u) x ∈ Ω u = 0 x ∈ ∂Ω where g(x, −ξ) = −g(x, ξ) and g has subcritical exponential growth in R 2. Using the method developed by Bolle, we prove that this problem has infinitely many solutions under suitable conditions on the growth of g(u) and f (u).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2014

ISSN: 1687-2770

DOI: 10.1186/s13661-014-0162-y