Big Polynomial Rings with Imperfect Coefficient Fields

نویسندگان

چکیده

We previously showed that the inverse limit of standard-graded polynomial rings with perfect (or semiperfect) coefficient field is a ring in an uncountable number variables. In this paper, we show result holds no hypothesis on field. also prove analogous for ultraproducts rings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings with a setwise polynomial-like condition

Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.

متن کامل

Faster integer and polynomial multiplication using cyclotomic coefficient rings

We present an algorithm that computes the product of two n-bit integers in O(n log n (4\sqrt 2)^{log^* n}) bit operations. Previously, the best known bound was O(n log n 6^{log^* n}). We also prove that for a fixed prime p, polynomials in F_p[X] of degree n may be multiplied in O(n log n 4^{log^* n}) bit operations; the previous best bound was O(n log n 8^{log^* n}).

متن کامل

Factoring in Skew-Polynomial Rings over Finite Fields

Efficient algorithms are presented for factoring polynomials in the skew-polynomial ring F[x; σ], a non-commutative generalization of the usual ring of polynomials F[x], where F is a finite field and σ: F → F is an automorphism (iterated Frobenius map). Applications include fast functional decomposition algorithms for a class of polynomials in F[x] whose decompositions are “wild” and previously...

متن کامل

Coding with skew polynomial rings

In analogy to cyclic codes, we study linear codes over finite fields obtained from left ideals in a quotient ring of a (non commutative) skew polynomial ring. The paper shows how existence and properties of such codes are linked to arithmetic properties of skew polynomials. This class of codes is a generalization of the θ-cyclic codes discussed in [1]. However θ-cyclic codes are performant repr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2021

ISSN: ['0026-2285', '1945-2365']

DOI: https://doi.org/10.1307/mmj/1603353740