Bi‐enzymatic Conversion of Cinnamic Acids to 2‐Arylethylamines
نویسندگان
چکیده
منابع مشابه
Multitarget molecular hybrids of cinnamic acids.
In an attempt to synthesize potential new multitarget agents, 11 novel hybrids incorporating cinnamic acids and paracetamol, 4-/7-hydroxycoumarin, benzocaine, p-aminophenol and m-aminophenol were synthesized. Three hybrids-2e, 2a, 2g-and 3b were found to be multifunctional agents. The hybrid 2e derived from the phenoxyphenyl cinnamic acid and m-acetamidophenol showed the highest lipoxygenase (L...
متن کاملProduction of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproduc...
متن کاملIn vitro genotoxicity assessment of caffeic, cinnamic and ferulic acids.
Phenols are a large and diverse class of compounds, many of which occur naturally in a variety of food plants; they exhibit a wide range of biological effects, including antibacterial, anti-inflammatory, antiallergic, hepatoprotective, antithrombotic, antiviral, anticarcinogenic, and vasodilatory actions. We examined the genotoxic and clastogenic potential of three phenolic compounds: caffeic, ...
متن کاملNatural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.
Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and f...
متن کاملA novel approach in cinnamic acid synthesis: direct synthesis of cinnamic acids from aromatic aldehydes and aliphatic carboxylic acids in the presence of boron tribromide.
Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP) and pyridine (Py) as bases and N-methyl-2-pyrolidinone (NMP) as solvent, at reflux (180-190 degrees C) for 8-12 hours.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ChemCatChem
سال: 2020
ISSN: 1867-3880,1867-3899
DOI: 10.1002/cctc.201902128