Biderivations of finite-dimensional complex simple Lie algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

Classification of finite dimensional simple Lie algebras in prime characteristics

We give a comprehensive survey of the theory of finite dimensional Lie algebras over an algebraically closed field of prime characteristic and announce that the classification of all finite dimensional simple Lie algebras over an algebraically closed field of characteristic p > 3 is now complete. Any such Lie algebra is up to isomorphism either classical or a filtered Lie algebra of Cartan type...

متن کامل

Quantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras

For a finite dimensional simple Lie algebra g, the standard universal solution R(x) ∈ Uq(g) ⊗2 of the Quantum Dynamical Yang–Baxter Equation quantizes the standard trigonometric solution of the Classical Dynamical Yang–Baxter Equation. It can be built from the standard R–matrix and from the solution F (x) ∈ Uq(g) ⊗2 of the Quantum Dynamical coCycle Equation as R(x) = F 21 (x)R F12(x). F (x) can...

متن کامل

Classification of Finite-dimensional Semisimple Lie Algebras

Every finite-dimensional Lie algebra is a semi-direct product of a solvable Lie algebra and a semisimple Lie algebra. Classifying the solvable Lie algebras is difficult, but the semisimple Lie algebras have a relatively easy classification. We discuss in some detail how the representation theory of the particular Lie algebra sl2 tightly controls the structure of general semisimple Lie algebras,...

متن کامل

On 1-dimensional Representations of Finite W -algebras Associated to Simple Lie Algebras of Exceptional Type

We consider the finite W -algebra U(g, e) associated to a nilpotent element e ∈ g in a simple complex Lie algebra g of exceptional type. Using presentations obtained through an algorithm based on the PBW-theorem, we verify a conjecture of Premet, that U(g, e) always has a 1-dimensional representation, when g is of type G2, F4, E6 or E7. Thanks to a theorem of Premet, this allows one to deduce t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear and Multilinear Algebra

سال: 2017

ISSN: 0308-1087,1563-5139

DOI: 10.1080/03081087.2017.1295433