Beyond the 10-fold Way: 13 Associative $$ {\mathbb Z}_2\times {\mathbb Z}_2$$-Graded Superdivision Algebras

نویسندگان

چکیده

The “10-fold way” refers to the combined classification of 3 associative division algebras (of real, complex and quaternionic numbers) 7, $${\mathbb Z}_2$$ -graded, superdivision (in a algebra each homogeneous element is invertible). connection 10-fold way with periodic table topological insulators superconductors well known. Motivated by recent interest in Z}_2\times {\mathbb -graded physics (classical quantum invariant models, parastatistics) we classify show that 13 inequivalent cases have be added way. Our scheme based on “alphabetic presentation Clifford algebras”, here extended graded algebras. generators are expressed as equal-length words 4-letter alphabet (the letters encode basis invertible $$2\times 2$$ real matrices word symbol tensor product skipped). split into series (4 subcases 4 each), (5 8 generators) 16 generators). As an application, parafermionic Hamiltonian possessing time-reversal particle-hole symmetries presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Connectivity: $\mathbb Z_4$ v. $\mathbb Z_2^2$

We answer a question on group connectivity suggested by Jaeger et al. [Group connectivity of graphs – A nonhomogeneous analogue of nowhere-zero flow properties, JCTB 1992]: we find that Z2-connectivity does not imply Z4-connectivity, neither vice versa. We use a computer to find the graphs certifying this and to verify their properties using nontrivial enumerative algorithm. While the graphs ar...

متن کامل

On the Kernel of \mathbb Z_2^s -Linear Hadamard Codes

The Z2s -additive codes are subgroups of Z n 2s , and can be seen as a generalization of linear codes over Z2 and Z4. A Z2s -linear Hadamard code is a binary Hadamard code which is the Gray map image of a Z2s additive code. It is known that the dimension of the kernel can be used to give a complete classification of the Z4-linear Hadamard codes. In this paper, the kernel of Z2s -linear Hadamard...

متن کامل

NTRU over rings beyond \mathbbZ{\mathbb{Z}}

The NTRU cryptosystem is constructed on the base ring Z. We give suitability conditions on rings to serve as alternate base rings. We present an example of an NTRU-like cryptosystem based on the Eisenstein integers Z[ζ3], which has a denser lattice structure than Z for the same dimension, and which furthermore presents a more difficult lattice problem for lattice attacks, for the same level of ...

متن کامل

$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})$-Linear Skew Constacyclic Codes

In this paper, we study skew constacyclic codes over the ring ZqR where R = Zq + uZq, q = p s for a prime p and u2 = 0. We give the definition of these codes as subsets of the ring ZqR . Some structural properties of the skew polynomial ring R[x, θ] are discussed, where θ is an automorphism of R. We describe the generator polynomials of skew constacyclic codes over R and ZqR. Using Gray images ...

متن کامل

$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$

Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Clifford Algebras

سال: 2023

ISSN: ['0188-7009', '1661-4909']

DOI: https://doi.org/10.1007/s00006-023-01263-1