Betti Numbers of Toric Varieties and Eulerian Polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eulerian the Betti variety numbers , tableaux , and numbers of a toric

Stembridge, J.R., Eulerian numbers, tableaux, and the Betti numbers of a toric variety, Discrete Mathematics 99 (1992) 307-320. Let Z denote the Coxeter complex of S,, and let X(X) denote the associated toric variety. Since the Betti numbers of the cohomology of X(Z) are Eulerian numbers, the additional presence of an &-module structure permits the definition of an isotypic refinement of these ...

متن کامل

Laurent polynomials and Eulerian numbers

Article history: Received 24 August 2009 Available online 25 February 2010

متن کامل

Characteristic Varieties and Betti Numbers of Free Abelian Covers

The regular Z-covers of a finite cell complex X are parameterized by the Grassmannian of r-planes in H(X,Q). Moving about this variety, and recording when the Betti numbers b1, . . . , bi of the corresponding covers are finite carves out certain subsets Ωr(X) of the Grassmannian. We present here a method, essentially going back to Dwyer and Fried, for computing these sets in terms of the jump l...

متن کامل

Piecewise polynomials, Minkowski weights, and localization on toric varieties

mathematical sciences publishers i l i li t t r s s s s c c c a e a i al ie e li e h n pub h t ti l i li r m m s s s s c c c a e a i al ie e li e i l i li t t r s s s s c c c a e a i al ie e li e h n pub h t ti l i li r m m s s s s c c c a e a i al ie e li e mathematical sciences publishers i l i li t t r s s s s c c c a e a i al ie e li e i l i li i l i li t t r s s s s c c c a e a i al ie e l...

متن کامل

Bernstein Polynomials, Bergman Kernels and Toric Kähler Varieties

We show that the classical Bernstein polynomials BN(f)(x) on the interval [0, 1] (and their higher dimensional generalizations on the simplex Σm ⊂ R) may be expressed in terms of Bergman kernels for the Fubini-Study metric on CP: BN(f)(x) is obtained by applying the Toeplitz operator f(N−1Dθ) to the Fubini-Study Bergman kernels. The expression generalizes immediately to any toric Kähler variety...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2012

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2011.571733