Beta autoregressive fractionally integrated moving average models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dierential Geometry of Autoregressive Fractionally Integrated Moving Average Models

The di erential geometry of autoregressive fractionally integrated moving average processes is developed. Properties of Toeplitz forms associated with the spectral density functions of these long memory processes are used to compute the geometric quantities. The role of these geometric quantities on the asymptotic bias of the maximum likelihood estimates of the model parameters and on the Bartl...

متن کامل

On continuous-time autoregressive fractionally integrated moving average processes

In this paper, we consider a continuous-time autoregressive fractionally integrated moving average (CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model is useful for studying time series with short memory, long memory and antipersistence. We inves...

متن کامل

Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models

We discuss computational aspects of likelihood-based estimation of univariate ARFIMA(p, d, q) models. We show how efficient computation and simulation is feasible, even for large samples. We also discuss the implementation of analytical bias corrections.

متن کامل

Forecasting Inflation: Autoregressive Integrated Moving Average Model

This study compares the forecasting performance of various Autoregressive integrated moving average (ARIMA) models by using time series data. Primarily, The Box-Jenkins approach is considered here for forecasting. For empirical analysis, we used CPI as a proxy for inflation and employed quarterly data from 1970 to 2006 for Pakistan. The study classified two important models for forecasting out ...

متن کامل

Stationarity of Generalized Autoregressive Moving Average Models

Time series models are often constructed by combining nonstationary effects such as trends with stochastic processes that are believed to be stationary. Although stationarity of the underlying process is typically crucial to ensure desirable properties or even validity of statistical estimators, there are numerous time series models for which this stationarity is not yet proven. A major barrier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2019

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2018.10.001