Best proximity points and stability results for controlled proximal contractive set valued mappings
نویسندگان
چکیده
منابع مشابه
Best Proximity Points for Generalized α-ψ-Proximal Contractive Type Mappings
LetA andB be two nonempty subsets of ametric space (X, d). An element x ∈ A is said to be a fixed point of a given map T : A → B ifTx = x. Clearly,T(A)∩A ̸ = 0 is a necessary (but not sufficient) condition for the existence of a fixed point of T. If T(A) ∩ A = 0, then d(x, Tx) > 0 for all x ∈ A that is, the set of fixed points of T is empty. In a such situation, one often attempts to find an ele...
متن کاملCommon best proximity points for $(psi-phi)$-generalized weak proximal contraction type mappings
In this paper, we introduce a pair of generalized proximal contraction mappings and prove the existence of a unique best proximity point for such mappings in a complete metric space. We provide examples to illustrate our result. Our result extends some of the results in the literature.
متن کاملOn best proximity points for multivalued cyclic $F$-contraction mappings
In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.
متن کاملSome results on convergence and existence of best proximity points
In this paper, we introduce generalized cyclic φ-contraction maps in metric spaces and give some results of best proximity points of such mappings in the setting of a uniformly convex Banach space. Moreover, we obtain convergence and existence results of proximity points of the mappings on reflexive Banach spaces
متن کاملBest Proximity Point Theorems for F -contractive Non-self Mappings
In this article, we prove the existence of a best proximity point for F contractive nonself mappings and state some results in the complete metric spaces. Also we define two kinds of F proximal contraction and extend some best proximity theorems and improve the recent results. 2010 Mathematics Subject Classification: 46N40; 47H10; 54H25; 46T99
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2016
ISSN: 1687-1812
DOI: 10.1186/s13663-016-0510-y