Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Possible Sufficient Conditions for Strong Law of Large Numbers for Multi-Indexed Orthogonal Random Elements

It will be shown and induced that the d-dimensional indices in the Banach spaces version conditions ∑ n(E‖Xn‖/|n|) < ∞ are sufficient to yield limmin1≤ j≤d(nj)→∞(1/ |nα|)∑k≤n ∏d j=1(1− (kj − 1)/nj)Xk = 0 a.s. for arrays of James-type orthogonal random elements. Particularly, it will be shown also that there are the best possible sufficient conditions for multi-indexed independent real-valued ra...

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

Laws of Large Numbers for Random Linear

The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the...

متن کامل

marcinkiewicz-type strong law of large numbers for double arrays of negatively dependent random variables

in the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. let be a double sequence of pairwise negatively dependent random variables. if for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). in addition, it also converges to 0 in . the res...

متن کامل

the strong law of large numbers for pairwise negatively dependent random variables

in this paper, strong laws of large numbers (slln) are obtained for the sums ƒ°=nii x1, undercertain conditions, where {x ,n . 1} n is a sequence of pairwise negatively dependent random variables.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2007

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2007/86909