Best linear unbiased estimator approach for time-of-arrival based localisation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best linear unbiased estimator approach for time-of-arrival based localisation

A common technique for source localisation is to utilise the time-of-arrival (TOA) measurements between the source and several spatially separated sensors. The TOA information defines a set of circular equations from which the source position can be calculated with the knowledge of the sensor positions. Apart from nonlinear optimisation, least squares calibration (LSC) and linear least squares ...

متن کامل

On Best Linear Unbiased Estimator Approach for Time-of-Arrival based Localization

A common technique for source localization is to utilize the time-of-arrival (TOA) measurements between the source and several spatially separated sensors. The TOA information defines a set of circular equations from which the source position can be calculated with the knowledge of the sensor positions. Apart from nonlinear optimization, least squares calibration (LSC) and linear least squares ...

متن کامل

The Best Linear Unbiased Estimator for Continuation of a Function

We show how to construct the best linear unbiased predictor (BLUP) for the continuation of a curve in a spline-function model. We assume that the entire curve is drawn from some smooth random process and that the curve is given up to some cut point. We demonstrate how to compute the BLUP efficiently. Confidence bands for the BLUP are discussed. Finally, we apply the proposed BLUP to real-world ...

متن کامل

The Best Unbiased Estimator for the Cmb Angular Bispectrum

While the statistical properties of the CMB anisotropies are a powerful means to discriminate amongst the possible cosmological scenarios, actually measuring non-Gaussianity in the data is a very difficult task1. The typically small signal should be compared to the noise and the key quantity is the signal to noise ratio. The noise creeps into the dataset through instrumental errors, foregrounds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IET Signal Processing

سال: 2008

ISSN: 1751-9675

DOI: 10.1049/iet-spr:20070190