Best approximation using a peak norm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Limit of Best Generalized Peak Norm Approximations

Let X μ be a finite measure space without atoms and having measure μ X = 1, and let E be a normed linear space whose elements are μ-measureable functions defined on X. Let χA denote the Haar function (or characteristic function) of A which takes value 1 on A ∈ and zero everywhere else on . A fundamental assumption in what follows is that if f ∈ E and A ∈ , then fχA ∈ E. For any α 0 < α ≤ 1, a g...

متن کامل

Best Approximation in TVS

In this paper  we give newresults on the best approximation  in the Hausdorff topological vectorspace and  consider relationship  with orthogonality. Also we determined under  what conditions the map $P_{K,f}$ is upper semicontinous.

متن کامل

Best one-sided approximation of polynomials under L1 norm

In this paper, we develop an analytic solution for the best one-sided approximation of polynomials under L1 norm, that is, we 0nd two polynomials with lower degree which bound the given polynomial such that the areas between the bounding polynomials and the given polynomial attain minimum. The key ingredient of our technique is a characterization for one-sided approximations based on orthogonal...

متن کامل

The best approximation of some rational functions in uniform norm

Here we are concerned with the best approximation by polynomials to rational functions in the uniform norm. We give some new theorems about the best approximation of 1/(1 + x) and 1/(x − a) where a > 1. Finally we extend this problem to that of computing the best approximation of the Chebyshev expansion in uniform norm and give some results and conjectures about this.  2005 IMACS. Published by...

متن کامل

Fuzzy Best Simultaneous Approximation of a Finite Numbers of Functions

Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the  set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1991

ISSN: 0021-9045

DOI: 10.1016/0021-9045(91)90016-4