Berry-Esseen Bounds for Projections of Coordinate Symmetric Random Vectors
نویسندگان
چکیده
منابع مشابه
Berry-esseen Bounds for Projections of Coordinate Symmetric Random Vectors
For a coordinate symmetric random vector (Y1, . . . ,Yn) = Y ∈ R, that is, one satisfying (Y1, . . . ,Yn) =d (e1Y1, . . . , enYn) for all (e1, . . . , en) ∈ {−1,1}, for which P(Yi = 0) = 0 for all i = 1,2, . . . ,n, the following Berry Esseen bound to the cumulative standard normal Φ for the standardized projection Wθ = Yθ/vθ of Y holds: sup x∈R |P(Wθ ≤ x)−Φ(x)| ≤ 2 n ∑ i=1 |θi |E|X i | + 8.4E(...
متن کاملBerry-Esseen bounds for econometric time series
We derive uniform and non–uniform error bounds in the normal approximation under a general dependence assumption. Our method is tailor made for dynamic time series models employed in the econometric literature but it is also applicable for many other dependent processes. Neither stationarity nor any smoothness conditions of the underlying distributions are required. If the introduced weak depen...
متن کاملBerry Esseen Bounds for Combinatorial Central Limit
Berry Esseen type bounds to the normal, based on zeroand size-bias couplings, are derived using Stein’s method. The zero biasing bounds are illustrated with an application to combinatorial central limit theorems where the random permutation has either the uniform distribution or one which is constant over permutations with the same cycle type and having no fixed points. The size biasing bounds ...
متن کاملBerry-Esseen for Free Random Variables
An analogue of the Berry-Esseen inequality is proved for the speed of convergence of free additive convolutions of bounded probability measures. The obtained rate of convergence is of the order n, the same as in the classical case. An example with binomial measures shows that this estimate cannot be improved without imposing further restrictions on convolved measures. Courant Institute of Mathe...
متن کاملNew Berry-Esseen bounds for non-linear functionals of Poisson random measures*
This paper deals with the quantitative normal approximation of non-linear functionals of Poisson random measures, where the quality is measured by the Kolmogorov distance. Combining Stein’s method with the Malliavin calculus of variations on the Poisson space, we derive a bound, which is strictly smaller than what is available in the literature. This is applied to sequences of multiple integral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2009
ISSN: 1083-589X
DOI: 10.1214/ecp.v14-1502