Behavior of Synthetic Jet in Cross Flow at Low Reynolds Number
نویسندگان
چکیده
منابع مشابه
Micromixer based on viscoelastic flow instability at low Reynolds number.
We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re approximately 0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solu...
متن کاملPropulsive Force Measurements and Flow Behavior of Undulatory Swimmers at Low Reynolds Number
The swimming behavior of the nematode Caenorhabditis elegans is investigated in aqueous solutions of increasing viscosity. Detailed flow dynamics associated with the nematode’s swimming motion as well as propulsive force and power are obtained using particle tracking and velocimetry methods. We find that C. elegans delivers propulsive thrusts on the order of a few nanonewtons. Such findings are...
متن کاملLow-Reynolds-number swimming at pycnoclines.
Microorganisms play pivotal functions in the trophic dynamics and biogeochemistry of aquatic ecosystems. Their concentrations and activities often peak at localized hotspots, an important example of which are pycnoclines, where water density increases sharply with depth due to gradients in temperature or salinity. At pycnoclines organisms are exposed to different environmental conditions compar...
متن کاملQuiet swimming at low Reynolds number.
The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturba...
متن کاملCompensatory escape mechanism at low Reynolds number.
Despite high predation pressure, planktonic copepods remain one of the most abundant groups on the planet. Their escape response provides one of most effective mechanisms to maximize evolutionary fitness. Owing to their small size (100 µm) compared with their predators (>1 mm), increasing viscosity is believed to have detrimental effects on copepods' fitness at lower temperature. Using high-spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Science and Technology
سال: 2010
ISSN: 1880-5558
DOI: 10.1299/jfst.5.35